1 /*
2 * Copyright (C) 2011 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
5 * in compliance with the License. You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software distributed under the
10 * License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
11 * express or implied. See the License for the specific language governing permissions and
12 * limitations under the License.
13 */
14
15 package com.google.common.primitives;
16
17 import static com.google.common.base.Preconditions.checkArgument;
18 import static com.google.common.base.Preconditions.checkNotNull;
19
20 import com.google.common.annotations.Beta;
21 import com.google.common.annotations.GwtCompatible;
22
23 import java.math.BigInteger;
24 import java.util.Arrays;
25 import java.util.Comparator;
26
27 /**
28 * Static utility methods pertaining to {@code long} primitives that interpret values as
29 * <i>unsigned</i> (that is, any negative value {@code x} is treated as the positive value
30 * {@code 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as
31 * well as signed versions of methods for which signedness is an issue.
32 *
33 * <p>In addition, this class provides several static methods for converting a {@code long} to a
34 * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned
35 * number.
36 *
37 * <p>Users of these utilities must be <i>extremely careful</i> not to mix up signed and unsigned
38 * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper
39 * class be used, at a small efficiency penalty, to enforce the distinction in the type system.
40 *
41 * <p>See the Guava User Guide article on <a href=
42 * "http://code.google.com/p/guava-libraries/wiki/PrimitivesExplained#Unsigned_support">
43 * unsigned primitive utilities</a>.
44 *
45 * @author Louis Wasserman
46 * @author Brian Milch
47 * @author Colin Evans
48 * @since 10.0
49 */
50 @Beta
51 @GwtCompatible
52 public final class UnsignedLongs {
53 private UnsignedLongs() {}
54
55 public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1
56
57 /**
58 * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on
59 * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)}
60 * as signed longs.
61 */
62 private static long flip(long a) {
63 return a ^ Long.MIN_VALUE;
64 }
65
66 /**
67 * Compares the two specified {@code long} values, treating them as unsigned values between
68 * {@code 0} and {@code 2^64 - 1} inclusive.
69 *
70 * @param a the first unsigned {@code long} to compare
71 * @param b the second unsigned {@code long} to compare
72 * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
73 * greater than {@code b}; or zero if they are equal
74 */
75 public static int compare(long a, long b) {
76 return Longs.compare(flip(a), flip(b));
77 }
78
79 /**
80 * Returns the least value present in {@code array}, treating values as unsigned.
81 *
82 * @param array a <i>nonempty</i> array of unsigned {@code long} values
83 * @return the value present in {@code array} that is less than or equal to every other value in
84 * the array according to {@link #compare}
85 * @throws IllegalArgumentException if {@code array} is empty
86 */
87 public static long min(long... array) {
88 checkArgument(array.length > 0);
89 long min = flip(array[0]);
90 for (int i = 1; i < array.length; i++) {
91 long next = flip(array[i]);
92 if (next < min) {
93 min = next;
94 }
95 }
96 return flip(min);
97 }
98
99 /**
100 * Returns the greatest value present in {@code array}, treating values as unsigned.
101 *
102 * @param array a <i>nonempty</i> array of unsigned {@code long} values
103 * @return the value present in {@code array} that is greater than or equal to every other value
104 * in the array according to {@link #compare}
105 * @throws IllegalArgumentException if {@code array} is empty
106 */
107 public static long max(long... array) {
108 checkArgument(array.length > 0);
109 long max = flip(array[0]);
110 for (int i = 1; i < array.length; i++) {
111 long next = flip(array[i]);
112 if (next > max) {
113 max = next;
114 }
115 }
116 return flip(max);
117 }
118
119 /**
120 * Returns a string containing the supplied unsigned {@code long} values separated by
121 * {@code separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}.
122 *
123 * @param separator the text that should appear between consecutive values in the resulting
124 * string (but not at the start or end)
125 * @param array an array of unsigned {@code long} values, possibly empty
126 */
127 public static String join(String separator, long... array) {
128 checkNotNull(separator);
129 if (array.length == 0) {
130 return "";
131 }
132
133 // For pre-sizing a builder, just get the right order of magnitude
134 StringBuilder builder = new StringBuilder(array.length * 5);
135 builder.append(toString(array[0]));
136 for (int i = 1; i < array.length; i++) {
137 builder.append(separator).append(toString(array[i]));
138 }
139 return builder.toString();
140 }
141
142 /**
143 * Returns a comparator that compares two arrays of unsigned {@code long} values
144 * lexicographically. That is, it compares, using {@link #compare(long, long)}), the first pair of
145 * values that follow any common prefix, or when one array is a prefix of the other, treats the
146 * shorter array as the lesser. For example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}.
147 *
148 * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
149 * support only identity equality), but it is consistent with
150 * {@link Arrays#equals(long[], long[])}.
151 *
152 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order">Lexicographical order
153 * article at Wikipedia</a>
154 */
155 public static Comparator<long[]> lexicographicalComparator() {
156 return LexicographicalComparator.INSTANCE;
157 }
158
159 enum LexicographicalComparator implements Comparator<long[]> {
160 INSTANCE;
161
162 @Override
163 public int compare(long[] left, long[] right) {
164 int minLength = Math.min(left.length, right.length);
165 for (int i = 0; i < minLength; i++) {
166 if (left[i] != right[i]) {
167 return UnsignedLongs.compare(left[i], right[i]);
168 }
169 }
170 return left.length - right.length;
171 }
172 }
173
174 /**
175 * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit
176 * quantities.
177 *
178 * @param dividend the dividend (numerator)
179 * @param divisor the divisor (denominator)
180 * @throws ArithmeticException if divisor is 0
181 */
182 public static long divide(long dividend, long divisor) {
183 if (divisor < 0) { // i.e., divisor >= 2^63:
184 if (compare(dividend, divisor) < 0) {
185 return 0; // dividend < divisor
186 } else {
187 return 1; // dividend >= divisor
188 }
189 }
190
191 // Optimization - use signed division if dividend < 2^63
192 if (dividend >= 0) {
193 return dividend / divisor;
194 }
195
196 /*
197 * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
198 * guaranteed to be either exact or one less than the correct value. This follows from fact
199 * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
200 * quite trivial.
201 */
202 long quotient = ((dividend >>> 1) / divisor) << 1;
203 long rem = dividend - quotient * divisor;
204 return quotient + (compare(rem, divisor) >= 0 ? 1 : 0);
205 }
206
207 /**
208 * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit
209 * quantities.
210 *
211 * @param dividend the dividend (numerator)
212 * @param divisor the divisor (denominator)
213 * @throws ArithmeticException if divisor is 0
214 * @since 11.0
215 */
216 public static long remainder(long dividend, long divisor) {
217 if (divisor < 0) { // i.e., divisor >= 2^63:
218 if (compare(dividend, divisor) < 0) {
219 return dividend; // dividend < divisor
220 } else {
221 return dividend - divisor; // dividend >= divisor
222 }
223 }
224
225 // Optimization - use signed modulus if dividend < 2^63
226 if (dividend >= 0) {
227 return dividend % divisor;
228 }
229
230 /*
231 * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
232 * guaranteed to be either exact or one less than the correct value. This follows from fact
233 * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
234 * quite trivial.
235 */
236 long quotient = ((dividend >>> 1) / divisor) << 1;
237 long rem = dividend - quotient * divisor;
238 return rem - (compare(rem, divisor) >= 0 ? divisor : 0);
239 }
240
241 /**
242 * Returns the unsigned {@code long} value represented by the given decimal string.
243 *
244 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
245 * value
246 * @throws NullPointerException if {@code s} is null
247 * (in contrast to {@link Long#parseLong(String)})
248 */
249 public static long parseUnsignedLong(String s) {
250 return parseUnsignedLong(s, 10);
251 }
252
253 /**
254 * Returns the unsigned {@code long} value represented by the given string.
255 *
256 * Accepts a decimal, hexadecimal, or octal number given by specifying the following prefix:
257 *
258 * <ul>
259 * <li>{@code 0x}<i>HexDigits</i>
260 * <li>{@code 0X}<i>HexDigits</i>
261 * <li>{@code #}<i>HexDigits</i>
262 * <li>{@code 0}<i>OctalDigits</i>
263 * </ul>
264 *
265 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
266 * value
267 * @since 13.0
268 */
269 public static long decode(String stringValue) {
270 ParseRequest request = ParseRequest.fromString(stringValue);
271
272 try {
273 return parseUnsignedLong(request.rawValue, request.radix);
274 } catch (NumberFormatException e) {
275 NumberFormatException decodeException =
276 new NumberFormatException("Error parsing value: " + stringValue);
277 decodeException.initCause(e);
278 throw decodeException;
279 }
280 }
281
282 /**
283 * Returns the unsigned {@code long} value represented by a string with the given radix.
284 *
285 * @param s the string containing the unsigned {@code long} representation to be parsed.
286 * @param radix the radix to use while parsing {@code s}
287 * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
288 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX}
289 * and {@link Character#MAX_RADIX}.
290 * @throws NullPointerException if {@code s} is null
291 * (in contrast to {@link Long#parseLong(String)})
292 */
293 public static long parseUnsignedLong(String s, int radix) {
294 checkNotNull(s);
295 if (s.length() == 0) {
296 throw new NumberFormatException("empty string");
297 }
298 if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
299 throw new NumberFormatException("illegal radix: " + radix);
300 }
301
302 int max_safe_pos = maxSafeDigits[radix] - 1;
303 long value = 0;
304 for (int pos = 0; pos < s.length(); pos++) {
305 int digit = Character.digit(s.charAt(pos), radix);
306 if (digit == -1) {
307 throw new NumberFormatException(s);
308 }
309 if (pos > max_safe_pos && overflowInParse(value, digit, radix)) {
310 throw new NumberFormatException("Too large for unsigned long: " + s);
311 }
312 value = (value * radix) + digit;
313 }
314
315 return value;
316 }
317
318 /**
319 * Returns true if (current * radix) + digit is a number too large to be represented by an
320 * unsigned long. This is useful for detecting overflow while parsing a string representation of
321 * a number. Does not verify whether supplied radix is valid, passing an invalid radix will give
322 * undefined results or an ArrayIndexOutOfBoundsException.
323 */
324 private static boolean overflowInParse(long current, int digit, int radix) {
325 if (current >= 0) {
326 if (current < maxValueDivs[radix]) {
327 return false;
328 }
329 if (current > maxValueDivs[radix]) {
330 return true;
331 }
332 // current == maxValueDivs[radix]
333 return (digit > maxValueMods[radix]);
334 }
335
336 // current < 0: high bit is set
337 return true;
338 }
339
340 /**
341 * Returns a string representation of x, where x is treated as unsigned.
342 */
343 public static String toString(long x) {
344 return toString(x, 10);
345 }
346
347 /**
348 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated
349 * as unsigned.
350 *
351 * @param x the value to convert to a string.
352 * @param radix the radix to use while working with {@code x}
353 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
354 * and {@link Character#MAX_RADIX}.
355 */
356 public static String toString(long x, int radix) {
357 checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
358 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix);
359 if (x == 0) {
360 // Simply return "0"
361 return "0";
362 } else {
363 char[] buf = new char[64];
364 int i = buf.length;
365 if (x < 0) {
366 // Separate off the last digit using unsigned division. That will leave
367 // a number that is nonnegative as a signed integer.
368 long quotient = divide(x, radix);
369 long rem = x - quotient * radix;
370 buf[--i] = Character.forDigit((int) rem, radix);
371 x = quotient;
372 }
373 // Simple modulo/division approach
374 while (x > 0) {
375 buf[--i] = Character.forDigit((int) (x % radix), radix);
376 x /= radix;
377 }
378 // Generate string
379 return new String(buf, i, buf.length - i);
380 }
381 }
382
383 // calculated as 0xffffffffffffffff / radix
384 private static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1];
385 private static final int[] maxValueMods = new int[Character.MAX_RADIX + 1];
386 private static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1];
387 static {
388 BigInteger overflow = new BigInteger("10000000000000000", 16);
389 for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
390 maxValueDivs[i] = divide(MAX_VALUE, i);
391 maxValueMods[i] = (int) remainder(MAX_VALUE, i);
392 maxSafeDigits[i] = overflow.toString(i).length() - 1;
393 }
394 }
395 }